# List of examples

The following is a list of the examples which are included with the PSOPT Release 5 distribution. The results from most examples can be compared with results presented in the references provided. Full details on all the examples, including the source code used in their implementation, can be found in the PSOPT PDF documentation.

*Alp rider problem**[J. Betts, "Practical Methods for Optimal Control Using Nonlinear Programming", SIAM, 2001]**Brachistochrone problem**[A. E. Bryson and Y.C. Ho, "Applied Optimal Control", Halsted Press, 1975]**Breakwell problem.**[A. E. Bryson and Y.C. Ho, "Applied Optimal Control", Halsted Press, 1975]**Bryson-Denham problem**[A.E. Bryson, M.N. Desai, and W.C. Ho.man. "Energy-State Approximation in Performance Optimization of Supersonic Aircraft". Journal of Aircraft, 6:481-488, 1969]**Bryson's maximum range problem**[ A.E. Bryson, M.N. Desai, and W.C. Ho.man. "Energy-State Approximation in Performance Optimization of Supersonic Aircraft". Journal of Aircraft, 6:481-488, 1969]**Catalytic cracking of gas oil**[ E. D. Dolan and J. J. More. Benchmarking optimization software with COPS 3.0. Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, 2004 ]**Catalyst mixing problem**[O. Von Stryk. User's guide for DIRCOL (Version 2.1): A direct collocation method for the numerical solution of optimal control problems. Technical Report, Technische Universitat Munchen, 1999 ]**Coulomb friction**[R. Luus. Iterative Dynamic Programming. Chapman and Hall / CRC, 2002 ]**DAE Index 3 parameter estimation problem**[K. Schittkowski. Numerical Data Fitting in Dynamical Systems. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.]**Delayed states problem**[ R. Luus. "Iterative Dynamic Programming". Chapman and Hall / CRC, 2002]**Dynamic MPEC problem**[J. T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, 2010]**Geodesic problem**[V. Becerra, PSOPT Release 4.0.0 Manual, 2019]**Goddard rocket maximum ascent problem**[A.E. Bryson. Dynamic Optimization. Addison-Wesley, 1999]**Hang glider**[J. T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, 2010]**Hanging chain problem**[P. E. Rutquist and M. M. Edvall. PROPT Matlab Optimal Control Software. TOMLAB Optimization, 2009]**Heat difussion problem**[J. Betts, "Practical Methods for Optimal Control Using Nonlinear Programming", SIAM, 2001 ]**Hypersensitive problem**[ A.V. Rao and K.D. Mease. Eigenvector Approximate Dichotomic Basis Method for Solving Hyper- sensitive Optimal Control Problems. Optimal Control Applications and Methods, 21:1-19, 2000]**Interior point constraint problem**[L.S. Jennings, M.E. Fisher, K.L. Teo, and C.J. Goh. MISER3 Optimal Control Software Version 2.0 Theory and User Manual. Department of Mathematics, The University of Western Australia, 2002 ]**Isoperimetric constraint problem.**Lambert's problem**[D.A. Vallado. "Fundamentals of Astrodynamics and Applications". Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. ]**Lee-Ramirez bioreactor**[R. Luus. "Iterative Dynamic Programming". Chapman and Hall / CRC, 2002. ]**Linear tangent steering problem**[J. Betts, "Practical Methods for Optimal Control Using Nonlinear Programming", SIAM, 2001]**Low thrust orbit transfer**[J. Betts, "Practical Methods for Optimal Control Using Nonlinear Programming", SIAM, 2001]**Manutec R3 robot**[J. Franke and M. Otter. The manutec r3 benchmark models for the dynamic simulation of robots. Technical report, Institute for Robotics and System Dynamics, DLR Oberpfa.enhofen, 1993]**Minimum swing control for a container crane**[ K.L. Teo, C.J. Goh, and K.H. Wong. A Uni.ed Computational Approach to Optimal Control Problems. Wiley, New York, 1991]**Minimum time to climb for a supersonic aircraft**[J. T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, 2010]**Missile terminal burn maneouvre**[S. Subchan and R. Zbikowski. Computational optimal control: tools and practice. Wiley, 2009.]**Moon lander problem**[P. E. Rutquist and M. M. Edvall. PROPT Matlab Optimal Control Software. TOMLAB Optimization, 2009]**Multi-segment problem**[Q. Gong, F. Fahroo, and I.M. Ross. Spectral algorithms for pseudospectral methods in optimal control. Journal of Guidance Control and Dynamics, 31:460-471, 2008]**Notorious parameter estimation problem**[K. Schittkowski. Numerical Data Fitting in Dynamical Systems. Kluwer**Academic Publishers, Dordrecht, The Netherlands, 2002.]**Obstacle avoidance problem**[P. E. Rutquist and M. M. Edvall. PROPT Matlab Optimal Control Software. TOMLAB Optimization, 2009]**Rayleigh problem**Reorientation of an asymmetric rigid body**Shuttle re-entry problem**[J. Betts, "Practical Methods for Optimal Control Using Nonlinear Programming", SIAM, 2001]**Singular control problem**[R. Luus. Iterative Dynamic Programming. Chapman and Hall / CRC, 2002.]**Time varying state constraint problem**[K.L. Teo, C.J. Goh, and K.H. Wong. A Uni.ed Computational Approach to Optimal Control Problems. Wiley, New York, 1991]**Two burn orbit transfer**[J. Betts, "Practical Methods for Optimal Control Using Nonlinear Programming", SIAM, 2001]**Two link robotic arm**[R. Luus. Iterative Dynamic Programming. Chapman and Hall / CRC, 2002.]**Two-phase path tracking robot**[O. Von Stryk. User's guide for DIRCOL (Version 2.1): A direct collocation method for the numerical solution of optimal control problems. Technical Report, Technische Universitat Munchen, 1999]**Two-phase Schwartz problem**[P. E. Rutquist and M. M. Edvall. PROPT Matlab Optimal Control Software. TOMLAB Optimization, 2009]**Vehicle launch problem**[D. A. Benson. A Gauss Pseudospectral Transcription for Optimal Control. PhD thesis, MIT, Department of Aeronautics and Astronautics, Cambridge, Mass., 2004]**Zero propellant maneouvre of the International Space Station**[S.A. Bhatt. Optimal reorientation of spacecraft using only control moment gyroscopes. Master's thesis, Rice University, Houston, Texas, 2007]*